

CONTEXT PROFILE

MAIN DOMAIN OF THE INNOVATION

Animal management

AGROCLIMATIC AREA

Atlantic central

CLIMATE

Moderate rainfall

SOIL TYPE

Peat

MANAGEMENT

Pasture dairy

TECHNICAL

Easy

FINANCE/INVESTMENT

Low

MARKET

Global

SOCIAL

Full-time farmer

Case Study: DE_01	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Block calving system	+++	+++	+++	+++	+++	+++	+++	+++	+++
Calving in autumn	++	+++	+++	+++	+	++	++	++	+

Implementation Gaps

- Knowledge of farmers / farmers education
- The need of the milk industry to have a constant milk flow throughout the year
- Geographical position does not offer constant and enough fodder for high performance cows
- Hot summer; not enough water for green pastures and not enough fodder for high performance-cows grazing
- Not enough silage in winter

Research Gaps

- Effects of spring versus autumn block calving, e.g. on vitality of offspring and cows, milk composition etc., in different regions
- Optimal fodder management and adapted cow breeds and pasture species for autumn block calving systems in different regions

Suggestions to Adapt

- In many cases, especially where milk production is low(er), block calving in spring could be preferred
- Further education for farmers
- Strategic planning with milk industry
- Use breeds adapted to the region

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	mid
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	not applicable/not known
Initial advisory costs	not applicable/not known
Initial buildings and machineries	mid
Initial certification costs	not applicable/not known
Initial working capital (personal qualification, marketing and promotion, etc.)	not applicable/not known

ON-GOING COSTS

On-going advisory costs	not applicable/not known
On-going certification costs	not applicable/not known
On-going buildings and machinery costs	not applicable/not known
On-going working capital	not applicable/not known

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	mid
Reduction in input use (fertilizers; pesticides; feed) etc.	none or low
Payback period	mid
Product value added	mid
Additional farm income through agroecological/agri-environmental payment schemes	not applicable/not known

Environmental

Animal feed self-sufficiency increase	not applicable/not known
Biodiversity increase	not applicable/not known
Improved nitrogen cycling	mid
Soil regeneration	not applicable/not known
Animal health and welfare improvement	high

Social

Workload reduction	mid
Engagement of young generation	high

Literature

English

- https://www.journalofdairyscience.org/article/S0022-0302(15)00616-5/pdf
- https://www.journalofdairyscience.org/action/showPdf?pii=S0022-0302%2819%2930979-8