

CONTEXT PROFILE

THE NETHERLANDS

FARMER

Hielke and Hanny de Rooij

INNOVATION

Optimising grazing with automation and diversity

MAIN DOMAIN OF THE INNOVATION

Improvement of grassland management

AGROCLIMATIC AREA

Atlantic central

CLIMATE

Moderate rainfall

SOIL TYPE

Clay

MANAGEMENT

Pasture dairy

TECHNICAL

Difficult

FINANCE/INVESTMENT

Low

MARKET

Global

SOCIAL

Full-time farmer

Case Study: NL_05	Agroclimatic Zone								
Item (Key Innovation Elements)	Alpine	Atlantic Central	Atlantic North	Atlantic South	Boreal	Continental North	Continental South	Mediterranean North	Mediterranean South
Automatic milking with parttime grazing	++	+++	+++	+++	+++	++	++	++	++
Herd separated in two groups for grazing (split herd)	+++	+++	+++	+++	+++	+++	+++	+++	+++
Frequent direct seeding of herbs in permanent pastures	++	+++	+++	+++	+++	++	++	++	++

Implementation Gaps

- Limited access to sufficient grazing areas close to the milking facility can restrict grazing opportunities and increase walking distances
- Direct seeding methods often have high failure rates, requiring improvements in technique or equipment for better establishment of herbs
- High initial investment and operational costs for automated milking systems, which may be a barrier for smaller or less capitalized farms

Research Gaps

• To identify herbal species that can withstand frequent grazing without compromising pasture productivity and biodiversity

Suggestions to Adapt

- To maximize grazed grass intake, restrict supplemental feed in the barn for a few hours before cows go out to graze, encouraging greater pasture consumption
- To improve seed establishment, schedule direct seeding during periods of high soil moisture, ensuring better seed-to-soil contact for successful germination

COST-BENEFIT ANALYSIS

INVESTMENT COSTS

Total initial investment costs at start up:	low
Initial authorisation costs (e.g. sanitary, veterinary, etc.)	low
Initial advisory costs	low
Initial buildings and machineries	low
Initial certification costs	low
Initial working capital (personal qualification, marketing and promotion, etc.)	low

ON-GOING COSTS

On-going advisory costs	low
On-going certification costs	low
On-going buildings and machinery costs	low
On-going working capital	low

BENEFITS RELATIVE TO ORIGINAL SYSTEM

Economic

Reduction in energy consumption (electricity; fuel consumption)	not applicable/not known
Reduction in input use (fertilizers; pesticides; feed) etc.	not applicable/not known
Payback period	not applicable/not known
Product value added	not applicable/not known
Additional farm income through agroecological/agri-environmental payment schemes	not applicable/not known

Environmental

Animal feed self-sufficiency increase	mid
Biodiversity increase	high
Improved nitrogen cycling	mid
Soil regeneration	not applicable/not known
Animal health and welfare improvement	mid

Social

Workload reduction	not applicable/not known
Engagement of young generation	not applicable/not known

Literature

English

- Shortall J, Foley C, Sleator RD, O'Brien B (2018). The effect of concentrate supplementation on milk production and cow traffic in early and late lactation in a pasture-based automatic milking system. *Animal* 12, 853-863. https://doi.org/10.1017/S1751731117002221
- McEvoy, M, Kennedy, E, Murphy, JP, Boland, TM, Delaby, L and O'Donovan, M (2008) The effect of herbage allowance and concentrate supplementation on milk production performance and dry matter intake of spring-calving dairy cows in early lactation. *Journal of Dairy Science* 91, 1258–1269. https://doi.org/10.3168/jds.2007-0710